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Abstract. We have examined some aspects of the ground state of a quantum two-dimensional 
electron gas interacting with In(r) potential. It is shown that the divergence appearing in the 
Hartree-Fock contribution to the ground-state energy exactly cancels the divergence in the 
electrostatic contribution. The next leading contribution to the ground-state energy is 
explicitly calculated and is also found to be finite. Further, the exact asymptotic expression 
for the structure factor at large wavevectors is obtained using the exact asymptotic solution 
of the two-electron Schrodinger equation for small separation r .  

1. Introduction 

The study of Coulomb systems in two dimensions ( 2 ~ )  has received a good deal of 
attention in the past owing to its varied applications. The well known examples are 
a two-dimensional electron gas (2DEG) formed between the layers of semiconductor 
heterojunctions (Ando et a1 (1982) and references therein) and electrons trapped on the 
surface of liquid helium (Cole 1974). In both cases the Coulomb interaction between 
electrons is 3~ in nature, i.e. e 2 / r ,  but their motion is restricted in the plane. Both 
classical and quantum aspects of statistical mechanics of this 2~ system have been studied 
in detail (Baus and Hansen 1980, Ando et a1 1982). 

The Coulomb potential between two point charges of charge z in d dimensions is 
normally defined as the solution of the Poisson equation 

V%p(r) = -Cz26(r) 

where the constant C is 4n,  2n  and 2 in 3D, 2D and l D ,  respectively. In 2D its solution is 
~ ( r )  = -z*ln(r/R,) where R o  is an arbitrary scale length. 

The classical statistical mechanics of a 2D ln(r) system has been extensively studied 
(Bakshi et a1 1979,1981). The laboratory analogue of the system under consideration is 
that of defects in a 2D lattice which interact via a ln(r) potential. This system has 
been studied in the context of a Kosterlitz-Thouless transition (Minnhagen (1987) and 
references therein). Another “physical” system which reduces to this one is that of 
like parallel uniformly charged rods (interacting via an ordinary Coulomb interaction) 
constrained to move in a plane which is the perpendicular bisector of each line (rod). 
The L+ = limit ( L  is the length of each rod) of this system is the ln(r) ~ D E G  under 
consideration here, while its L + 0 limit is the system of ordinary charges confined to 
move in 2 ~ .  The Fourier transform of such an interaction is (1/q2)[1 - exp(-ql)]. 
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So far, the quantum aspects of the 2D ln(r) system have not received much attention. 
It is not yet clear whether the quantum ground state of electrons interacting with the 
ln(r) potential exists. This doubt arises because of the apparent divergence in the 
Hartree-Fock (HF) energy. Our motivation therefore is to examine the condition under 
which the ground state of this system is possible. 

In section 2 we describe our system consisting of electrons interacting with the ln(r) 
potential in 2 ~ .  The calculation of ground-state energy (GSE) is presented in section 3 
and it is shown that the GSE is always finite. In section 4 we describe some exact results 
for the pair correlation function. 

2. The Hamiltonian 

We consider a system of electrons in the presence of a uniform positively charged 
neutralising background. The Hamiltonian for such a system is 

where 
H = H,l + Hb + He+b (1) 

and 

Equations (2), (3) and (4) describe the electron-electron, background-background and 
electron-background interactions, respectively. Here z is the charge of an electron and 
N is the total number of electrons which are confined to move within a circle of radius R 
and area S (nR2 = S ) .  The electron-electron interaction part, equation (2), reduces in 
the second quantised notation to 

x J d 2 r 1 1 d 2 r 2  exp[-i(klrl + k2r2)] In( Ir1 - r21 ) 
RO 

where k and A are the wavevectors and spin indices, respectively. The term with k l  , A = 
k 4 ,  A4 and k 2 ,  A2 = k 3 ,  A 3  represents the electrostatic interaction between electrons and 
is given by 

where 
(6) E:: = -1 ,N(N - 1) (z2/S')Z(R) 

i; r1ir2 . 
Z(R) = I d 2 r l  I d 2 r 2  In 

The remaining electronic part of the Hamiltonian can be written as 

where the prime on the second summation means that q = 0 is not to be included. The 



ZDEG with In(r) interactions 443 1 

properties of this system can be described in terms of a dimensionless parameter r,  
defined as r,  = r o / a o  where ro is the mean radius associated with an electron, i.e. 
SIN = n r i  and an is an equivalent Bohr radius for this 2D interaction. It is given by 
a. = h / 6  z (see appendices). It can be easily seen that here rz represents the ratio 
of an average potential energy to kinetic energy. In 3D this ratio iteslf is r, and is the 
characteristic parameter describing the system. 

The Hamiltonian in equation (7) effectively describes the properties of the system 
since the other parts contribute only a constant energy as shown in the next section. 
Therefore, in the r, + 0, i.e. high-density, limit, we treat the first term of equation (7), 
i.e. the kinetic energy term as the unperturbed Hamiltonian Ho, and the second term as 
H ' ,  the perturbing part. 

3. Ground-state energy 

The GSE E,  is the sum of various contributions denoted as 

where E,, is the total electrostatic contribution, Ekin is the kinetic energy, E,, is 
the Hartree-Fock contribution and E,,,, is the correlation energy. For this system, 
E kin ( =$lo)) is given by 

The evaluation of the rest of the terms in equation (8) are discussed separately in the 
following sections. 

3.1. Electrostatic contribution 

The electrostatic energy is the sum of equations (3), (4) and (6), i.e. 

Evaluating various terms in equation (10) we get 

EG = -k Ekin + EHF + (8) 

,!?kin = Z2/2r;. (9) 

E,, = H b  + + E::. (10) 

Hb = -(p8/2)z(R) (11) 
Hel-b = p?lz(R) (12) 

and E;: is given by equation (6) where the integral Z(R) is also defined. po( = N z / S )  is 
the background charge density. The double integral Z(R) is calculated by recognising 
that this integral represents twice the self-energy of a charged disc of radius R,  with unit 
charge density. That self-energy can be evaluated in a straightforward way by supposing 
that the disc is created by adding successively rings of infinitesimal thickness. So we have 

ESelf(R) = -Z(R)/2 = - 2 d  d r r 3  In - = B n * In - InR (i) ( (elFR,) 

or 

Z(R) = is2 ln(S/nRie'/2) (13) 
where 

Substituting this expression in (6), (11) and (12) and adding, we get the electrostatic 
energy as 

S = nR2.  

E,, = N ( z 2 / 4 )  l n (S /nRi f i ) .  (14a) 
Thus the electrostatic energy per particle diverges in the S+ x (R + x )  limit, 
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with the resulting surface tension T (= -dE/ds) = -p0z2/4  signifying a collapse. By 
constrast the electron gas in 3 ~ ,  confined to a sphere of radius R ,  has electrostatic energy 
proportional to 1 / R ,  and the resulting pressure P (= -dE/aV) p o z 2 / R ,  so that the 
system is stable in the thermodynamic limit. The 2DEG in the thermodynamic limit can 
become stable if we allow the electron system to have a slightly smaller radius R e  
compared with the background charge radius R. The resulting charge imbalance will 
modify the electrostatic energies given in equations (6)  and (12),  with the resulting 
electrostatic energy 

E,, = ( N Z * / ~ )  In(S/R;G) + ( S / R ) { ( N ~ Z * / ~ ) ( I  - I/N) - N ~ Z * [ I  + l n ( ~ / ~ i G ) ] >  

+ 2 ( 6 / R ) 2 N 2 z 2 [ 1  + ln(R/RO)] (146) 
where 

6 = ( R  - R,) /R.  

This expression has a minimum for 6 = (4N)- ' .  After substituting this value for 6 in 
equation (14b),  the surface tension is found to be -poz2/16N,  which vanishes in the 
thermodynamic limit. 

3.2. Hartree-Fock contribution 

The first-order or HF contribution to the GSE is only an exchange term 

The k-integration in this expression represents the area of intersection of two circles of 
radius k F  whose centres are a distance q apart. This is given by 

Putting this into equation (15) and integrating, we get the expression for exchange 
energy as 

E(')  =N(z2/7d)[(n/4)  ln(l/SN) +76/4+ 1 + 1/(2 x 32) + ( 1  x 3) / (2  X 4 X 5 2 )  +. , .] (17) 

where qmin has been taken as v/rt-ls and the relation k ;  = 2nN/S has been used. This 
expression can further be written as 

E(')  = Nz2(-i In N + C) (18) 
where 

C = (l/n)[l + 1/(2 x 3 2 )  + ( 1  x 3) / (2  x 4 x 5*)  + . . .]- d ln(S/e) = 0.08664. (19) 
Thus we find that the HF contribution to the GSE diverges in the thermodynamic limit. 

This divergence, however, is cancelled by the divergence in the electrostatic part of the 
energy. Summing the electrostatic and HFcOntributionS, equations (14) and (18), we get 

( l / N ) ( E e s  + EHF) = (z2/2)[ln r ,  + ln(ao/Ro) + 2C - 0.251. (20) 
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T i m e  

Figure 1. The second-order non-leading 
contribution to the GSE. 

3.3. Correlation energy 

From second order onwards, the most dominant (q  - 0) contribution to the GSE comes 
from ring diagrams. Therefore, we proceed to evaluate the correlation energy to this 
approximation. We follow Rajagopal and Kimball(l977) and write down the correlation 
energy per electron as 

where, for Qqu(u), the expression valid for small q is 

The q-integral in equation (21) yields 

276 io1 d q  q2  [ In( 1 + 7 r: R(u))  - 2 R(u)]  
4 4 

2Jd 4Jd 
3 3 

= - [ln(l + R') - R'] - - RI3l2 tan-' 

where we have put r:R(u) = R ' .  Since R(u) < 1 always (equation (22)) and in the high- 
density regime rs < 1, we have R' < 1. So the RHS of equation (23) can be expanded in 
powers of R' ,  which will also give the power series expansion in Y ,  . Thus, expanding 
(23), retaining the first two terms, substituting in (21) and integrating, we get 

Ecorr/N = - 0 . 0 9 9 6 ~ ~ ~ ~  + O ( Y ~ ) .  (24) 
Equation (24) gives the contribution to correlation energy up to leading order in powers 
of Y , .  To find the next order, we evaluate the second-order exchange contribution EL2). 
The sequence of events contributing to EL2) is shown in figure 1, and its contribution is, 
from second-order perturbation theory, 
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The contribution of this is O(rt)  as has been shown in appendix 1. Combining this result 
with equation (24), we can write 

Substituting into equation (8) from equations (9), (20) and (26), we get the GSE, in the 
rs + 0 limit, as 

where 

This expression has a minimum at rs = 1.753. For a 3D Coulomb gas this occurs at r, = 
3.8 (Fetter and Walecka 1971) while this feature is missing from a 2~ gas with l / r  
interaction. 

Thus we show that the GSE for rs+ 0 does not diverge. In the low-density limit, i.e. 
rs+ =, the system is expected to be in a Wigner crystal state. The electrostatic energy 
(Ewc) of this state has been evaluated (Bakshi et a1 1981) and is found to be 

for a triangular lattice which has the lowest energy. 
From equations (28) and (27) we can write an interpolation formula for the GSE given 

as 
E / N z 2  = f In r ,  + f ln(ao/R,) + (0.  l l l l r ,  - 0.0767)/(0.1503rs + 1) + 1/2rf. (29) 
It can easily be seen that equation (29) exactly reproduces the leading terms for both 
limits, i.e. rs+ 0 and rs+ =. However, there exists no reliable estimate for the GSE in 
the intermediate r,regime. The Pad6 approximant form for the intermediate range of rs 
has been suggested in analogy with the Wigner interpolation formula for a 3DEG, which 
has been found to be very satisfactory. 

Ec,,,/N = 0.0996rsz2 + O(r:). 

E G / N z 2  = 1/2rt + f In r s  + K - 0.0996rs + O(rf) 

(26) 

(27) 

K = ln(ao/Ro) - 0.0767. 

E w c / N  = (2*/2) (In r ,  - 0.7392) + 1 ln(ao/Ro) (28) 

4. Structure factor at large wavevectors 

The large-q behaviour of the structure factor S ( q )  is determined by the small-r depen- 
dence of the pair correlation functiong(r). This is the probability of finding two electrons 
separated by a distance r and can be obtained from the square of an effective two- 
electron wavefunction (Kimball 1975). For small r ,  we get the wavefunction from the 
solution of the 2~ Schrodinger equation with unscreened potential, assuming many- 
body effects to be negligible at such small separation. Moreover, only the m = 0 state is 
considered because other angular momenta states give an insignificant contribution. 
This 2~ Schrodinger equation is given in appendix 2, and we have 

Sinceg(r) cc q ’ * ( r )  v ( r ) ,  therefore 
q ( r )  = 1 + f(r/ao)2 In(r/ao) r +  0. (30) 

g ( 4  = g(0)[1 + ln(r/ao>l r +  0. (31) 

1 - S ( q )  = r{1/[q2 + (2/ao>21 - l/q[q2 + (4/ao)*l1’*> + ~ ( q ) .  (32) 

The appropriate form of S ( q )  (for large q )  which produces this behaviour of g(r) is 
given by 

Here, the first term is dominant while Y(q)  vanishes more rapidly for large q. This can 
be verified by substitution into the defining equations 

and making use of standard integrals given by Gradshteyn and Ryzhik (1965). Making 
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these substitutions into equation (33), and comparing with equation (31) the coefficient 
of the r2  ln(r) term gives 

g(0) = y / k $  = ( a i / 4 k $  lim {q4[1 - S(q)]} .  

This is related to the occupation probability n(k)  in the following way: 
q+ = 

n(k)  = @'g(O) 1 exp(ik-r)  [ 1 + (;)* In(;)] d2r .  

(34) 

(35) 

This Fourier transform is obtained by making the substitution 

ko(r/a) = W a o )  r+  0. (36) 

(37)  

We then obtain 

n ( k )  = ( N / S )  g (0)  (2n /a  '0 k 4,  

so that 

g(0) = ( a i / @ )  lim [ k s n ( k ) ] .  
k- 

These are exact results (Kimball identities) in the r + 0 ( q  + t ~ )  limit for this 2~ ln(r) 
system. It is noted that earlier results obtained by Thakur and Pathak (1983) on S ( q )  
using STLS theory also varies in the same way as the exact result for large q. 

5. Concluding remarks 

In this paper we have presented the evaluation of the GSE of a quantum ZDEG. The 
anticipated divergence of the HF contribution to energy for this system has been found 
to be equal in magnitude but opposite in sign to the divergence appearing in the 
electrostatic contribution. Therefore we obtain a finite value for the GSE. The leading 
contribution to the GSE over the HF is also found to be finite. We have also calculated 
the Kimball identity for the structure factor of this 2~ system. 
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Appendix 1. To show that EL2) = O(ri)  

The sequence of events contributing to EL2) are shown in figure 1. From perturbation 
theory, the contribution from this is 
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The prefactors are respectively from the spin, the Fourier transform of the Coulomb 
interaction, the k l  , k 2 ,  q sums being converted into integrals, and from the energy 
denominator. Putting the prefactors and Fermi distributions together, equation (Al.  1) 
can be written as 

1 
(A1.2) E p r5 -- 

N - z 2  - 16n2 i d 2 q  I,, d 2 k 1  .Iy* d 2 k 2  q21k1 + k2 + q12,$ + ( k ,  + k , )  . q]  

where Y 1  and Y 2  denote the shaded areas shown in figure A l .  As such, equation (A1.2) 
shows that EL2)/N is O(rz) but it is necessary to show that contribution to the integral 
from the divergent parts of the integrand are finite. The second and third factors in the 
denominator of the integrand become vanishingly small or of the order of q when 
I kl  - k21 5 q;  this happens in and around the doubly shaded regime in figure A l .  So we 
show the existence of the integral only when q1 and $2 are small. 

Equation (A1.2) can be written, in the limit of small q ,  assuming that I k l  1 ,  I k21 = kF, 
as 

with factors in the denominator reducing to 
dl = 1 + q2/2k’, - cos($1 + $ 2 )  + (q/kF) (sin - sin G 2 )  

4J13q2<1 - r2/2 + 441 - $ 2 )  + %$l + $ 2 1 2  

where 
= q/kF (A1.4) 

and 
@ l . # J Z Q ’  

d2 = r2  + r(sin $1 - sin $ 2 )  - r(r + $1 - $ 2 )  

and where A($) is the thickness shown in figure A1 and is given by 
A($) 21 kF($r2 + r Sin 4) - k~r(Y/2 + $). 

(A1.5) 

(A1.6) 
Using forms appropriate for small $-values and choosing the upper limits as $o($o > 
q/kF but sin G o  = $o still holds), this part of the angular integral gives 

(r/2 + $1)(r/2 + $ 2 )  

(the 
create one) .‘This expression is easily evaluated and turns out to be 

+ $ 2 ) 2  term has been omitted as it serves only to shift the pole but does not 
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(A1.7) 

We had arbitrarily fixed @ o ;  so it must drop out when the other parts of the integral 
(from $ 2  > Go) are added; therefore we need not worry about the last term in 
(A1.7). The rest of it obviously gives a finite contribution-hence our conclusion that 
E ~ ~ ) / N  - O(r: ) .  

Appendix 2. Asymptotic wavefunctions in a In@) potential 

We first find the Bohr radius of two particles bound by a potential of the form 
z 2  ln(r/Ro). The force equation and the quantisation condition are 

z 2 / r  = p v 2 / r  (A2.1) 
and 

prv  = nh. (A2.2) 

a0 = h / G Z .  (A2.3) 
The energy in this orbit is 

~ i ~ ~ ,  = -z2 ln(ao/Ro&). (A2.4) 
We now write the Schrodinger equation for a particle in 2D moving in a potential of the 
form h(r /Ro)  
{-(h2/2p)[a2/ar2 + ( I / r ) ( a / i ~ ) ]  2 z 2  ln(r/Ro) + m2}yj(r) = @ ( r ) .  (A2.5) 
(Use the positive sign for an attractive potential, and the negative sign for a repulsive 
potential.) The angular part of the Schrodinger equation has the solution exp( kim6).  
We now change the variable as follows: put 

where 

Then equation (A2.5) transforms (for a repulsive potential, and m = 0) to 

where 

and 

This, apparently, does not have an exact solution in terms of known simple or special 
functions. So we find the asymptotic forms with the help of the transformation of the 
variable 

(A2.8) 
Now the Schrodinger equation reads 
[(I + 1 / u ) 2 d 2 / a v 2  - ( l / u2 ) (a / av )  + a exp(2v) sgn(u)]yj(u) = 0. (A2.9) 
As I u 1 + cc (U + 2 x, as r + cc or O), the middle term as well as the l / u  in first term can 
be neglected, and equation (A2.9) reduces to a Bessel equation with the solutions 

Solving for n = 1, we get the first Bohr radius 

u = l n F  

F = r/(Ro exp( - 1 / z2 ) ) .  

[a2 /du2  + au exp(2u)]q(u) = 0 

a = 2[(R0/a0) exp(-l/z2)]’ 

(A2.6) 

(A2.7) 

--cc < u < W .  

U = u + dlnlul.  

(A2.10) 

Using these solutions one can further ascertain that the middle term in (A2.9) is indeed 
negligible. 
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